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Retrieving from storage
— Underground, 1 - 2ft risers
— Limited access for equipment

— 2 -300hp mixer pumps (baseline)
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Rotating horizontal opposed jets
Battelle

Unsteady Jet Mixers at Hanford

e Treating & vitrifying waste

— Closed “black” cells

—  No maintenance for 40 years

Pneumatic pulsed jets

Pacific Northwest National Laboratory
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Turbulent Jets

Near Field Far Field

AR RERAN

zZ . u(z)

®» High Reynolds number far field

e Constant spread angle 6(z) = 6z

e Peak & ave. velocity decrease u(z) = cju;d;/ z i)
e Thrust/force is constant F(z) = F

o Flow rate increases (entrainment) q(z)/q; ~z/d

e Energy decreases e(z)/e;=d/z

e Constant Reynolds number Res(z) =Rey

Pacific Northwest National Laboratory
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Turbulent Jets, cont.

Same results for impinging & attaching jets
e Different constants

o Wall shear stress Ty () ~ Pujz(dj /r)?

» True independent of nozzle cross-sectional area

» Approximately true in near-far-field transition  z/d;, r/d; =15-30
» Allows one to approximately obtain flow fields, fluxes, forces, etc

» Similar relations for dense jets

NOZZLE
,f’_—

{a) ‘e
FREE JET REGION
/ IMPINGEMENT REGION

/—WALL JET REGION

v
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Jets as mixers

» Axial flow impeller: ND ~ uj
e dj/T <<1 (careful about blindly applying agitator results)

e Power, thrust, and flow numbers =~ 1
= Much higher power than agitators for same thrust
= Lower flow, higher head

> Highly directional
e point them where you want them
e Must design for thrust reaction

> Return placement
e Can be important

Pacific Northwest National Laboratory
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Downward vertical jet mixers

Centered Jet(s)

Jet rings(s)

Uy = UipN; (A} / T) < F(H/ T)
tyw ~ T2 /UdjN; x F2(H/ T)
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Geometry

Nozzle geometry
e Cross-section: No effect in far field- only area counts
e Convergence: extra thrust from pressure

» Stand-off
e No effect for h/dj < 6, little effect for h/T<<1

» Number of jets
e N2dj momentum/thrust effect
e T/NY¥2 ZOI geometric effect

> Return location
e Can be important- Avoid short-circuiting
» Dish shape

e Impingement angle- flow distribution

B Other internals
e Wakes/blockages

Pacific Northwest National Laboratory
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Intermittent Jets

» Dimensionless pulse time
determines regime
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Long pulse
N, = 80 - 500

Batielle

Pacific Northwest National Laboratory

U.S. Department of Energy 8



steady effects on mixing/mobilization

Would like to utilize steady mixing knowledge base

e Can we find simple corrections for unsteady effects or are we
dealing with fundamentally new phenomena?

» Must consider relative time scales
e Flow establishment/mixing times compared with pulse time
e Duty cycle
= What happens when the jet is off?
e Other time scales
= Erosion rates
m Settling rates
= Etc.
» Two new parameters are introduced
e Relative pulse volume
e Duty cycle

Pacific Northwest National Laboratory
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Pulse jet mixers

u;(t)

> PJMs Inthe WTP

e V (range)
e N (range)
T e Pvf (range)
> Mixing modes e DC (range)
o drive e Dpjm (range)
o refill

Pacific Northwest National Laboratory
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Important parameters

» Geometry > Waste physical

N number jets configuration

Uj jet velocity (peak) e Normal/off-normal

d/T nozzle diam. op(?ratlons

®,=V,/V  pulse size e Uniform

DC =1t/t, duty cycle e Settled layers

geometry

B Operational > Physical &
rheological
properties

Pacific Northwest National Laboratory
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se Jet Mixing Studies at Battelle/PNNL

Physical regimes » Scaled testing program

e Transitional flow e Simulant development

e unsteady = Physical/chemical

e Non-settling/non-Newtonian = Transparent/opaque

o Settling- wide particle size & | W phese

density range, agglomerates e Testing

e Heels- cohesive/non-cohesive = Bench scale - 40m?3

e In situ gas generation - slligle e iz
» Mixing requirements : 3‘;‘2,‘3!:2%3 prototypic

e Stagnation/caverns e Scale up

e Off-bottom suspension- V¢ = Rating, not designing

e Vertical distribution = Similarity, physical,

empirical

e Gas hold-up & release behavior _
e Instrumentation

Pacific Northwest National Laboratory
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Non-Newtonian PJM Test Program

» Technical basis
e Develop scaled testing approach
e Validate approach- limited testing at scales

B Rate existing designs
e (3 unique designs in WTP)

» Improved PJM designs
» PJM/sparge hybrid designs

Pacific Northwest National Laboratory
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Model problem: Cavern
formation

e |nitially gelled material

e Representative of restart after
mixing shutdown

e Good mixing system will
eliminate cavern

»Rheological model

e Static gel formation with shear
strength

e Bingham plastic laminar flow
rheology with yield stress t, and
consistency K

e Turbulent flow characteristics
determined by high shear
consistency ~K

Batielle

eory of PJM Operation with Non-
Newtonian Materials

Typical Pulse Jet Mixer System

- Un-yielded
) material
‘\‘
Distinct
t t interface
T —
*—} Turbulent flow

Shear
Stress

[llustrating Rheological Characteristics of
Waste Slurry

turbulent

Strain R ate
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Cavern Formation from a Steady Jet

Turbulent wall jet

u(z)= cugd/z 1 =Cepu’/2

» Force balance at static Stagnant

mterfac material
at ZC C -+ T/2 Tf —

_ T

» Yield Reynolds Number

» Reynolds number dependence

Red = pudd/k Cf ,» Cj = f(Red) -

Pacific Northwest National Laboratory
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Cavern Formation from a
Steady Jet

e Turbulent jet theory with force
balance at interface predicts
cavern height

» Yield Reynolds number

e Ratio fluid force to material
strength

Re. = pug / 1,
» Effects of pulsation

e Ratio PJM drive time to flow
establishment time

tp/tss ~ Vi /dgRe,
» Predicted cavern height

1/2
H d \V/
— —ag—=2 Rei’{l— exp(—cT"—))
D. D, d’Re.

Baiiene

of PJM Operation in Non-Newtonian
Materials

Undisturbed
m aterial

P Ze

u(z)
I

Turbu lent
% Cavern

9 0.875 inch Steady Jet

M 1.0 inch Pulse Jet

@ 2.0 inch Pulse Jet

Non-dimensional cavern height as a function of yield

Reynolds numbercfat asingle:PINuikaponiteatory
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Single-PJM Cavern Tests (laponite)
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st to Verify Scaled Testing Approach

reakthrough
1 PJ M TeStS ‘ ° Loctationg ‘

e Simulant selection ‘ /
e Verify cavern formation theory - Upwe'fl
»4PJM Tests Vel"?ty
e Downward firing PJMs v .
e Performed at 3 scales LA rx —
»Simulants e 1, ! v
e Laponite t TurbulemT t
= Transparent wem 0 uO\I/ s
= Adjustable shear strength v — 7 |

\4

e Kaolin/Bentonite Clay Dr

= Opaque » Types of measurements
= Adjustable yield e Cavern height (Laponite)

Stf@SS/COﬂSlStency 5 Kih h loci | &
” t t
»Test conditions Y o el (I

= Rheology (20 -120 Pa) o Upwell velocity (clay)

u VelOCity (3'30 m/S) Pacific Northwest National Laboratory
Batielle U.S. Department of Energy 18
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Small Scale Test Stands

» Battelle 1/4-scale 4
PJM Test Vessel

» SRNL 1/9-scale 4
PJM Test Vessel

34 in. diameter
250 gallons
Acrylic vessel

Compressed
air/'vacuum PJM
drive system

17 in. diameter
~30 ga”onS / £, Lo
Acrylic vessel Al o

Compressed
air/'vacuum PJM
drive system

Pacific Northwest National Laboratory
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Large-Scale Test Stand at Battelle

. @[5 3;’. i

Battelle 336 4 PIJM Test
Vessel

e ~13 ft. diameter, ~12,000
gallons

e Steel construction

e Prototypic AEA
Compressed air PJM drive
system

1 o

- L : i A5
| 4 L L B el

= B> Pulse tube prior to
installation

e 24 In. diameter
e 2 in. conical nozzle

Pacific Northwest National Laboratory
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Scaling Data Comparisons

© Laponite Breakthrough o ROt SoONeONoete oNONeORa
O Clay Breakthrough |___| D © Laponite Breakthrough |...]
R R e R st O Clay Breakthrough
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Comparison of surface breakthrough velocity for tanks
of 3 different scales with Laponite & cjay sim
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s hold-up & release- tests at 3 scales
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Baseline Designs

II Breakthrough, I}frozenOzones

N

v
III Breakthrough with slow IV Full turbulent mixing
peripheral movement

Pacific Northwest National Laboratory
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r sparging in Bingham Plastic Slurry
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PJM/air-sparge hybrid designs

34in
LR
Recirculation Pump
Discharge Line 129°, 128
70 in. Diameter Y
16 1/2 in. Diamete: - S
- 269
— Perimeter PJM
Sparge \ I
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In | _§— Center PIM
37 L
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1
] 308¢, 300° - L
Recirculation Pump ]
Discharge Line L —~4in 1 1/4in

257°263° 283° 3 7/8n

Recirculation Pump
Suction Line

Pacific Northwest National Laboratory

Batielle U.S. Department of Energy 27



inal Design Mixing Performance

PJM Only O PJMs + Sparging
PJMs + Pump (1 Disch. Noz) ------ Linear (PJM Only)

LS 35-36 Pa

- —ll- - HSLS 33-43 Pa

QSLS 32 Pa AZ+AFA
QSLS 13 Pa AZ+AFA
X  QSLS 3 Pa AZ+AFA

—_
o)
(e

. AT
/

Gas Volume Fraction (vol%)

1
—_

—_
o

-,

—— 0O
)

QSLS 34 Pa Clay
QSLS 13 Pa Clay

A E/
A

O
N5 e
([ ]

(@)

O

®

A

-

-

_—

-

—_
=

Superficial Velocity (mm/s)

Pacific Northwest National Laboratory
U.S. Department of Energy 28




M3- Rating WTP Mixing Systems

» Rate mixing system designs for balance of WTP vessels
e Normal operations & mixing restart

» Broad range of potential waste conditions
e Non-cohesive (settling) solids - cohesive solids
e Wide range of solids size, density, slurry rheology

» 18 different vessel/mixing system geometries

» Primary metrics

e Off-bottom suspension

e Vertical solids distribution
e Blend times

» Work in 3 phases: non-cohesive, cohesive, gas handling

Pacific Northwest National Laboratory
Batielle U.S. Department of Energy 29



eliminary tests with non-cohesive solids

» Simulants
e Glass spheres (low grade), S ~ 2.47
e 3sizes: d, = 63-100, 150-210, 600-800pum
e 2 solids loadings: ¢, = 0.005 & 0.015
» Vessel geometries
e 34-in., 1/13.4-scale of HLP-22
e 12 tubes, 0.3 & 0.45-in nozzles (4 & 6-in. full scale)

» Operational

e Pulse volume fraction ¢, = 0.025 - 0.10
e Duty cycle: DC =0.18, 0.36, 0.5, 1 (steady)

B Measurements
e Ujs & peak cloud height

Pacific Northwest National Laboratory
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® pulsed, 1.5% solids
O steady, 1.5% solids

< pulsed, 0.5% solids
< steady, 0.5% solids

Nozzle Diameter, dj (equiv. plant scale, in.)

Some off-bottom

¢ 4-in. pulsed, DC=0.18 B 4-in. pulsed, DC=0.33
X 6-in. pulsed, DC=0.18 +  6-in. pulsed, DC=0.33
4 in. Steady = = = =6in. Steady

suspension results

\ © DC=0.18 O DC=0.33

A DC-1.0, Steady |

0.00 0.05 0.10 0.15

Pulse Volume Fraction, fp

Batielle

Preliminary data for information only

100 1000
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y=5T2x 0 |
el ]
y=346x T 1T 2
} L L
.00 0.25 0.50 0.75 1.00
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orrelating just-suspended velocity

B Assume Zwietering values for un-tested parameters

Ucs= k(H/D)*14g%5(s—1)43 (D)3
x (dg)™ (d;) (100s¢5)*7 (DCY* (¢, /(1 + § )™

Batielle

D'=D/4/N

Steady Pulsed

k 0.78 0.23
dg 0.47 0.26
d; -1.3 -1.06
So. 0.23 0.34
DC -0.06
b, -0.18

Preliminary data for information only
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Data correlation: off-bottom suspension

Steady Ujs
10
s
y = 1.00x + il 1
81T 0.0 7 ’
2 _ 7 7 I
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y //
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Ve 7
s
2 y e
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4%
7
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0 2 4 6
measred Ucs

10

10

Unsteady Ujs based on peak. ve

y = 1.00x +

0.01
R? = 0.97

4 6

measred Ucs

8 10

B> Suggests pulsation effects small at low concentration

B Scale-up to plant conditions: design likely inadequate
e More testing at additional scales & higher solids required

Batielle
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¢ 100 micron pulsc® 200 micron pulsed 800 micron pulsq

¢ 100 micron stead$® 200 micron steady 800 micron steaq

Cloud height data

O DC=1* DC=0.3 DC=0.33 DC=0.1
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Correlating cloud-height

Simple energy argument
e Energy per pulse ~ change in potential energy of solids

o u’
OpFy ~ Fy =
’ g 2(s—1)gH,
He (I)p(l)d 112
— ~Ip Fp =
D O 2(s—1)gD

B> Attempt correlation of the form

He

D ~Fp " 0g" 0" include d./D or u./u

Pacific Northwest National Laboratory
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Correlation of cloud-height data

Correlation of steady-jet cloud-heigf

Correlation of pulsed-jet cloud-height
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Summary of findings

» Just suspended velocity

e Unsteady effects minor
m DC effects negligible

m There is evidence this breaks down at higher concentration
where time to suspend > drive time

e Similar solids size effect

e Concentration exponent 2x

e Effect of nozzle size as expected
e To be sure, need more data

Pacific Northwest National Laboratory
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Summary, cont.

» Vertical distribution

e Strong bulk density stratification effect

e Unsteady effects appear to dominate
= Exponents on DC & PVF
= Fundamental behavior

e Weak solids size dependence:
= Define Uy, (fjustto H...”). Then U, ~d.%%°

e Strong concentration effect: U~ ¢ 9
e Strong pulsation effect: Uc~ ¢, -0.5

Pacific Northwest National Laboratory

Batielle U.S. Department of Energy 38



	Mixing Sludges & Slurries with Pulsed Jets: Some mixing theory & Test Results
	Unsteady Jet Mixers at Hanford
	Turbulent Jets
	Turbulent Jets, cont.
	Jets as mixers
	Downward vertical jet mixers
	Geometry 
	Intermittent Jets
	Unsteady effects on mixing/mobilization
	Pulse jet mixers
	Important parameters
	Pulse Jet Mixing Studies at Battelle/PNNL
	Non-Newtonian PJM Test Program
	Theory of PJM Operation with Non-Newtonian Materials
	Cavern Formation from a Steady Jet
	Theory of PJM Operation in Non-Newtonian Materials
	Single-PJM Cavern Tests (laponite)
	Test to Verify Scaled Testing Approach
	Small Scale Test Stands
	Large-Scale Test Stand at Battelle
	Scaling Data Comparisons
	Scaling Data Comparisons
	Gas hold-up & release- tests at 3 scales
	Baseline Designs
	Improved PJM designs
	Air sparging in Bingham Plastic Slurry
	PJM/air-sparge hybrid designs
	Final Design Mixing Performance
	M3- Rating WTP Mixing Systems
	Preliminary tests with non-cohesive solids
	Some off-bottom suspension results
	Correlating just-suspended velocity
	Data correlation: off-bottom suspension
	Cloud height data
	Correlating cloud-height
	Correlation of cloud-height data
	Summary of findings
	Summary, cont.

